Steady Periodic Water Waves with Unbounded Vorticity: Equivalent Formulations and Existence Results
نویسندگان
چکیده
In this paper we consider the steady water wave problem for waves that possess a merely Lr−integrable vorticity, with r ∈ (1,∞) being arbitrary. We rst establish the equivalence of the three formulations the velocity formulation, the stream function formulation, and the height function formulation in the setting of strong solutions, regardless of the value of r. Based upon this result and using a suitable notion of weak solution for the height function formulation, we then establish, by means of local bifurcation theory, the existence of small amplitude capillary and capillary-gravity water waves with a Lr−integrable vorticity.
منابع مشابه
EXISTENCE OF A STEADY FLOW WITH A BOUNDED VORTEX IN AN UNBOUNDED DOMAIN
We prove the existence of steady 2-dimensional flows, containing a bounded vortex, and approaching a uniform flow at infinity. The data prescribed is the rearrangement class of the vorticity field. The corresponding stream function satisfies a semilinear elliptic partial differential equation. The result is proved by maximizing the kinetic energy over all flows whose vorticity fields are rearra...
متن کاملSteady Periodic Water Waves with Constant Vorticity: Regularity and Local Bifurcation
This paper studies periodic traveling gravity waves at the free surface of water in a flow of constant vorticity over a flat bed. Using conformal mappings the free-boundary problem is transformed into a quasilinear pseudodifferential equation for a periodic function of one variable. The new formulation leads to a regularity result and, by use of bifurcation theory, to the existence of waves of ...
متن کاملRegularity for steady periodic capillary water waves with vorticity.
In the following, we prove new regularity results for two-dimensional steady periodic capillary water waves with vorticity, in the absence of stagnation points. Firstly, we prove that if the vorticity function has a Hölder-continuous first derivative, then the free surface is a smooth curve and the streamlines beneath the surface will be real analytic. Furthermore, once we assume that the vor...
متن کاملApproximations of steady periodic water waves in flows with constant vorticity
We provide high-order approximations to periodic travelling wave profiles and to the velocity field and the pressure beneath the waves, in flows with constant vorticity over a flat bed.
متن کاملSymmetry of steady periodic water waves with vorticity.
The symmetry and monotonicity properties of steady periodic gravity water waves are established for arbitrary vorticities if the wave profile is monotone near the trough and every streamline attains a minimum below the trough. The proof uses the method of moving planes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Nonlinear Science
دوره 24 شماره
صفحات -
تاریخ انتشار 2014